我们报告了张力层造影差异相位对比度显微镜(T2DPC),这是一种用于同时测量相和各向异性的无定量标签层析成像方法。T2DPC扩展了差异相位对比显微镜(一种定量相成像技术),以突出光的矢量性质。该方法求解了从配备有LED矩阵,圆极偏振器和偏振敏感摄像机的标准显微镜获得的强度测量的各向异性样品的介电常数张量。我们证明了各种验证样品的折射率,双折射和方向的准确体积重建,并证明生物标本的重建极化结构是病理学的预测。
translated by 谷歌翻译
Transformers are becoming increasingly popular due to their superior performance over conventional convolutional neural networks(CNNs). However, transformers usually require a much larger amount of memory to train than CNNs, which prevents their application in many low resource settings. Local learning, which divides the network into several distinct modules and trains them individually, is a promising alternative to the end-to-end (E2E) training approach to reduce the amount of memory for training and to increase parallelism. This paper is the first to apply Local Learning on transformers for this purpose. The standard CNN-based local learning method, InfoPro [32], reconstructs the input images for each module in a CNN. However, reconstructing the entire image does not generalize well. In this paper, we propose a new mechanism for each local module, where instead of reconstructing the entire image, we reconstruct its input features, generated from previous modules. We evaluate our approach on 4 commonly used datasets and 3 commonly used decoder structures on Swin-Tiny. The experiments show that our approach outperforms InfoPro-Transformer, the InfoPro with Transfomer backbone we introduced, by at up to 0.58% on CIFAR-10, CIFAR-100, STL-10 and SVHN datasets, while using up to 12% less memory. Compared to the E2E approach, we require 36% less GPU memory when the network is divided into 2 modules and 45% less GPU memory when the network is divided into 4 modules.
translated by 谷歌翻译
With the research directions described in this thesis, we seek to address the critical challenges in designing recommender systems that can understand the dynamics of continuous-time event sequences. We follow a ground-up approach, i.e., first, we address the problems that may arise due to the poor quality of CTES data being fed into a recommender system. Later, we handle the task of designing accurate recommender systems. To improve the quality of the CTES data, we address a fundamental problem of overcoming missing events in temporal sequences. Moreover, to provide accurate sequence modeling frameworks, we design solutions for points-of-interest recommendation, i.e., models that can handle spatial mobility data of users to various POI check-ins and recommend candidate locations for the next check-in. Lastly, we highlight that the capabilities of the proposed models can have applications beyond recommender systems, and we extend their abilities to design solutions for large-scale CTES retrieval and human activity prediction. A significant part of this thesis uses the idea of modeling the underlying distribution of CTES via neural marked temporal point processes (MTPP). Traditional MTPP models are stochastic processes that utilize a fixed formulation to capture the generative mechanism of a sequence of discrete events localized in continuous time. In contrast, neural MTPP combine the underlying ideas from the point process literature with modern deep learning architectures. The ability of deep-learning models as accurate function approximators has led to a significant gain in the predictive prowess of neural MTPP models. In this thesis, we utilize and present several neural network-based enhancements for the current MTPP frameworks for the aforementioned real-world applications.
translated by 谷歌翻译
Part of Speech (POS) tagging is crucial to Natural Language Processing (NLP). It is a well-studied topic in several resource-rich languages. However, the development of computational linguistic resources is still in its infancy despite the existence of numerous languages that are historically and literary rich. Assamese, an Indian scheduled language, spoken by more than 25 million people, falls under this category. In this paper, we present a Deep Learning (DL)-based POS tagger for Assamese. The development process is divided into two stages. In the first phase, several pre-trained word embeddings are employed to train several tagging models. This allows us to evaluate the performance of the word embeddings in the POS tagging task. The top-performing model from the first phase is employed to annotate another set of new sentences. In the second phase, the model is trained further using the fresh dataset. Finally, we attain a tagging accuracy of 86.52% in F1 score. The model may serve as a baseline for further study on DL-based Assamese POS tagging.
translated by 谷歌翻译
To build general robotic agents that can operate in many environments, it is often imperative for the robot to collect experience in the real world. However, this is often not feasible due to safety, time, and hardware restrictions. We thus propose leveraging the next best thing as real-world experience: internet videos of humans using their hands. Visual priors, such as visual features, are often learned from videos, but we believe that more information from videos can be utilized as a stronger prior. We build a learning algorithm, VideoDex, that leverages visual, action, and physical priors from human video datasets to guide robot behavior. These actions and physical priors in the neural network dictate the typical human behavior for a particular robot task. We test our approach on a robot arm and dexterous hand-based system and show strong results on various manipulation tasks, outperforming various state-of-the-art methods. Videos at https://video-dex.github.io
translated by 谷歌翻译
The ability to learn from human demonstration endows robots with the ability to automate various tasks. However, directly learning from human demonstration is challenging since the structure of the human hand can be very different from the desired robot gripper. In this work, we show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning, where a five-finger human dexterous hand robot gradually evolves into a commercial robot, while repeated interacting in a physics simulator to continuously update the policy that is first learned from human demonstration. To deal with the high dimensions of robot parameters, we propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy. Through experiments on human object manipulation datasets, we show that our framework can efficiently transfer the expert human agent policy trained from human demonstrations in diverse modalities to target commercial robots.
translated by 谷歌翻译
Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.
translated by 谷歌翻译
In recent years, Machine learning (ML) techniques developed for Natural Language Processing (NLP) have permeated into developing better computer vision algorithms. In this work, we use such NLP-inspired techniques to improve the accuracy, robustness and generalizability of ML models for simulating transient dynamics. We introduce teacher forcing and curriculum learning based training mechanics to model vortical flows and show an enhancement in accuracy for ML models, such as FNO and UNet by more than 50%.
translated by 谷歌翻译
Lifelong learners must recognize concept vocabularies that evolve over time. A common yet underexplored scenario is learning with class labels over time that refine/expand old classes. For example, humans learn to recognize ${\tt dog}$ before dog breeds. In practical settings, dataset $\textit{versioning}$ often introduces refinement to ontologies, such as autonomous vehicle benchmarks that refine a previous ${\tt vehicle}$ class into ${\tt school-bus}$ as autonomous operations expand to new cities. This paper formalizes a protocol for studying the problem of $\textit{Learning with Evolving Class Ontology}$ (LECO). LECO requires learning classifiers in distinct time periods (TPs); each TP introduces a new ontology of "fine" labels that refines old ontologies of "coarse" labels (e.g., dog breeds that refine the previous ${\tt dog}$). LECO explores such questions as whether to annotate new data or relabel the old, how to leverage coarse labels, and whether to finetune the previous TP's model or train from scratch. To answer these questions, we leverage insights from related problems such as class-incremental learning. We validate them under the LECO protocol through the lens of image classification (CIFAR and iNaturalist) and semantic segmentation (Mapillary). Our experiments lead to surprising conclusions; while the current status quo is to relabel existing datasets with new ontologies (such as COCO-to-LVIS or Mapillary1.2-to-2.0), LECO demonstrates that a far better strategy is to annotate $\textit{new}$ data with the new ontology. However, this produces an aggregate dataset with inconsistent old-vs-new labels, complicating learning. To address this challenge, we adopt methods from semi-supervised and partial-label learning. Such strategies can surprisingly be made near-optimal, approaching an "oracle" that learns on the aggregate dataset exhaustively labeled with the newest ontology.
translated by 谷歌翻译
对比方法导致了最近的自我监督表示学习(SSL)的表现激增。诸如BYOL或SIMSIAM之类的最新方法据称将这些对比方法提炼为它们的本质,消除了钟声和哨子,包括负面示例,这些示例不影响下游性能。这些“非对比度”方法的工作非常出色,而无需使用负面因素,即使全球最低限度的崩溃都在淡化。我们通过经验分析了这些非对抗性方法,发现Simsiam对数据集和模型大小非常敏感。特别是,如果模型相对于数据集大小而言太小,则SIMSIAM表示会经历部分维度崩溃。我们提出了一个度量标准来测量这种崩溃的程度,并表明它可以用于预测下游任务性能,而无需任何微调或标签。我们进一步分析建筑设计选择及其对下游性能的影响。最后,我们证明,转移到持续的学习设置充当正规化器并防止崩溃,并且在Imagenet上使用Resnet-18,连续和多上述训练之间的混合物可以提高线性探针精度多达18个百分点。
translated by 谷歌翻译